NYU

Lecture 02:
Convolutional Neural Networks
and Variants



Course Information

e Course website: https://www.saigianzhang.com/COURSE/
e | use Brightspace to post announcements and grades
e | provide an online zoom meeting option for people interested

In auditing the class. However, enrolled students are required
to attend in person unless special condition.

e Discussion groups has been created in the Brightspace

e Course emalil: efficientaiaccelerator@gmail.com
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https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2

Course Information

e The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and
in-class quiz.
o In-class quiz (15%)
In-course presentation (5%)
Assignments (30%): total three of them, each counts 10%
Midterm (25%)
Final project (25%)
m  Project Proposal (5%) (1 page)
m  Final Presentation (10%)
m  Final Report (10%)
e Readings:
o Course notes and papers (optional)
o (reference) Goodfellow, lan. "Deep learning." (2016). https://www.deeplearningbook.org/
e Lecture time:
o Friday: 5:00pm-7:30pm
e Office hour:
o Friday: 1:30pm-2:30pm, or by appointment (Zoom)

O O O O
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https://www.deeplearningbook.org/
https://nyu.zoom.us/j/94617243355?pwd=tfvBBL2QnxUDzbdXbmM0CjWjHKekwI.1&jst=2

In-Course Presentation General Policy

e Please use Google Slides to create your presentation slides.

e Sign up here:
https://docs.google.com/spreadsheets/d/1QL7gBQnMIuk-uTniPeHOHG6i4ij40
hVbuOoOACXBCMV4/edit?usp=sharing

e There is limit on the number of slides (10 pages for algorithmic paper, 14
pages for architectural paper), make sure to stay within the presentation
time limit (15 mins for algorithm paper, 25 mins for arch paper).

e Submission Deadline: Please send the link to your Google Slides
presentation by Friday before 2:00 PM each week to Shawn Yin
(xy2053@nyu.edu)

e Please ensure that the Google Slides link is set to 'Anyone with the link can
view' so that it is accessible to us.
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Recap

e DNN basics
o Multilayer perceptron

m Linear layer, activation function, softmax layer
Loss functions
Weights decay

Dropout
Optimizer

Learning rate scheduler
Weight Initialization

O 0O O 0O O O
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Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures

VGG
ResNet
MobileNet
ShuffleNet
SqueezeNet
DenseNet
EfficientNet
ConvNext

o CNN architectures for other vision tasks

NYU SAI LAB
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Convolutional Neural Networks

e Convolutional Neural Networks (CNNs) are a type of artificial neural network
designed for processing structured grid data, such as images. They're particularly
effective in tasks like image recognition, object detection and segmentation.

e The building blocks of a CNN includes: Classification  Classification o betection Instance

+ Localization

. Segmentation
o  Convolutional layer °9 i,

Activation layer
Normalization layer
Pooling layer
Softmax layer

O O O O

CAT, DOG, DUCK CAT, DOG, DUCK

PN e
b a

Single object Multiple objects
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Convolutional Neural Networks

e Convolutional Neural Networks (CNNs) are a type of artificial neural network
designed for processing structured grid data, such as images. They're particularly
effective in tasks like image recognition, object detection and segmentation.

e The building blocks of a CNN includes:
o Convolutional layer

Activation layer

Normalization layer

Pooling layer
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Convolutional Layers: Terminology

Feature
map Kernel
C
Conv |:>
H
W
Input feature maps Filter Output feature map
Input activation Output activation

e Core building block of a CNN, it is also the most computational intensive layer.
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Convolutional Layers

—————————————————————————————————————————————————————————————————————

C i
=N Fo Be-l OO-EE
H |
; el
Input feature maps ~ Filter  Output feature map |

e Core building block of a CNN, it is also the most computational intensive layer.
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Convolutional Layers

Kernels

n Convolutional
Q *|:| = —
©
e g @ | featurel maps |
o 2 g
= > —
1 =il -
Q2 =
-— o ®
1 L
£
Step 1 Step 2
e Each kernel moves across the spatial e The information from each feature maps
dimensions of feature maps in the input are then aggregated by summing the

Convolutional feature maps together.

activations, analyzing the information _ _
e Abias may be introduced.

within those spatial dimensions.
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2D Convolution: An Example

Kernels

*D:

Input feature
map
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Convolutional

feature map

Convolutional
feature map

Inner product
with filter 4

Inner product

1 0 5 Kernels
Input feature 110 -1 |4
3 |-1]-2 |*
map 0|2 3|-7
410 |-3
1 0 5 Inner product 0 S
31112 with filter -1 1|2
4 0 |-3 0 |-3
1 0 o Inner product 0 5
314 |- with filter 3 1|2
4 0 |-3 0 |-3

with filter -7
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Paddings

Kernel
0|3
2 | -2
3 | -1
Filter
0|3
2 | -2
3 | -1

Input feature 1193
map 3(-11-2
410 |-3
Input
Oj]0|O0OJO|O
Paddingof 1[0 [ 1 | 0 |mip O
O[3 [|-1]-2]0
0 ‘ 0(-3]|0
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25

12

20

20

25

-10

Padding is used to
preserved the spatial size
of the output features.
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Stride

padding = 0, stride = 1 padding = 0, stride = 2 padding = 1, stride = 2 padding = 1, stride = 1

NYU SAIl LAB| https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d




Summary

Hout = (Hin_K+2P)/S+1
Hin and Hout are the spatial sizes of the input and convolutional feature maps.
K is the weight kernel size
P is the padding size
S is the stride
For example:
o For input size of 224x224x3, weight kernel size is 3x3, padding size is 1
and stride size is 1, then the output size is (224-3+2)/1 + 1 = 224.

Hin K Hout
Hin E 3 KD - Hout

NYU SAI LAB




Computational Cost

w F Convolutional

K
H * K|:| = E feature maps
A

[ |

o - RNy N
[

~

Step 1 Step 2
e Each kernel moves across the spatial e The information from each feature maps
dimensions of feature maps in the input are then aggregated by summing the

Convolutional feature maps together.

activations, analyzing the information _ _
e Abias may be introduced.

within those spatial dimensions.

Computational cost in Multiply—accumulate operations (MAC): EXFoKx K% C

NYU SAI LAB
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Convolution

Filters
Input Feature .
maps C
- @7 _
H
w :
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Output Feature
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Convolution

Filters
Input Feature

maps )
CO/?V o
H \ |
w :
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Convolution
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Convolution

Filters

'“"“;532*“” ¢ Output Feature @  Number of MACs: MxKxKxCxExF

c.” K|l - MeEs e Storage cost:
i Qo(‘\l K. 32x(MxCxKxK+CxHxW+MxExF)
H S
W %o X C: number of input channels
A

H,W: size of the input feature maps
M: number of weight filters

| K: weight kernel size

J E,F: size of the output feature maps
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Convolution

Filters

Input Feature c .- Bias
maps -

.
-
.

~

e Abias term may be added to the convolutional output, applied across each output channel.

NYU SAI LAB
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Convolution

(B, C, W, H)
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Input Feature
maps
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Filters
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(B, M, E, F)
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Convolution

Input Feature
maps

(B, C, W, H)
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Filters

Output Feature
maps

(B, M, E, F)
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Convolution

(B, C, W, H)
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Computational Cost: Standard Convolution

Input Feature Output Feature
maps maps

® Number of MACs: BXxMxKxKxCxExF

Filters

e Storage cost:
- 32x(MxCxKxK+BxCxHxW+BxMxE xF)

B: batch size

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

I—ﬂ.fl
J

(B’ C! W! H)
(B’ M’ E’ F)
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Receptive Field of CNN across Layers

Layer | Layeri + 1 Layeri+ 2
ojojo|o|o] yo0|0|O| OO olo|of|0]|oO
0[1]0]|5]0 0 [12]|20] 3| 0] t0.]24|-9 |12] 0
: o3 [-1]-=2]o0 0 |20]25]-10] 0 o |-19]14]1 | o
— 04 |0|-3|0 0|5|3|-7|]0] _+0]5[4]|7]0
Block 2 | _
’ Normalization 0 0 O O 0 - - ’O O 0 O O O O 0 O O

e Assume a kernel size of 3 by 3.
e Every elements at layer i is a function of the entire receptive fields of the previous layers.
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Activation Functions: ReLLU

e Rectifier linear operation (ReLU) applies an elementwise activation function to the

output feature maps.
e This leaves the size of the output feature maps unchanged.

o f(x)=xif x>0, f(x) =0 otherwise.

1101 5 11015
RelLU
3|1|2|——[3]01|0
410 |-3 41010
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Activation Functions: GeLU

GELU activation function

e (Gaussian error linear unit (GeLU):
GeLU (x) = z®(x) “-
®(z) = P(y<z), whereY ~ N(0,1) 2
0.5z(1 4 tanh[\/2/7(z + 0.044715z>)))

e GelLU is increasingly being adopted in |
transformers and CNNs today.

Output
(=]

-2 1

NYU SAI LAB Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 (2016).

28



Batch Normalization

Batch
Normalization =
as)

A
>

Y_-HW x B x C

e Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability
and performance of neural networks.

NYU SAI LAB loffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv

preprint arXiv:1502.03167 (2015). »




Batch Normalization

X _
Batch Norm Y, = acc—“c +B. ForeachceC

o = {oc}, B={B3 = (e}, o = {0}

e For each channel c, we have:
o Xc: (HW x B)
o Mc and dc are the mean and standard deviation of Xc.
o dc and Bc are learnable parameters
O dc, PBc, U, Oc are scalers
e Overall, we have:
o M, 0,aandp all have a length of of C
o M, 0,aand are all fixed during the inference
o M, O are statistics based on the training dataset
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Batch Normalization: During Inference

e Given all the parameters are fixed, for each channel ¢, we have:

Yc:ac +/Bc:—Xc+(,Bc— ) |::>YvC:pCXC+qC
c Oc s
Filters
Input Feature . Output feature
maps i maps
C .“ Conv ’_ ‘.0 B t h
—_— : —> —> atc —
: —
H | X Normalization Y'C pCXC 2 dc
— 1
W :

e pc can be merged into the CNN weights.
i e (c can be merged into the CNN bias.
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Batch Normalization

e For each channel ¢, we have:
Xc — M Q.

O¢ ¢

Yc:ac

Input Feature
maps

-
-
.
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+/Bc:0__Xc+(,Bc_

Filters

Conv

Qcllc

c

% P

% D2

% Pwm

) = Y =pXc+qc

We can fold in the p and g to
the weights and bias of
convolutional layer during
inference and reduce the online
computational cost.
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Batch Normalization

e For each channel ¢, we have:

Xc_ c ¢ Ocflhe
—H+/BC:_XC+(IBC_ £

Yc:ac

) = Y =pXc+qc

O¢ O¢ O¢

e We can fold in the p and q to the weights and bias of convolutional layer during

NYU SAl LAB inference and reduce the online computational cost.
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Poollng

Enhance the model invariance to spatial transformations such as translation and rotation, thereby

reducing the risk of overfitting.
e Reduce the spatial size of the representation and reduce the amount of parameters and

computation in the CNN.

LA
",1

Translation

Should produce the same prediction result

\ 11 5] 0| 2
Max 2x2
Rotation 3| 16| 2 pooling 5|6
f - 4121213 5|4
- Y
” ,’ 3|5/0]4
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Strided Convolution As Pooling Layer

e Recent Neural Networks replace pooling layers with Strided Convolution

1

5

1

2

Wl |

0
6
2
0

2
2
3
4

—_—
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Kernels
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Stride = 2

Stride = 2
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Fully Connected Layers

e Neurons in a fully connected layer have full connections to all activations in the
previous layer, as seen in regular neural networks.

_____________________________

e Normally used in the last several layers to
generate the classification results.
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CNN Architecture for Image Classification Task

Input Feature Maps

- 0
S =@ O (1,10)
= = L\‘ﬁ’ — T P e 19 v ~

112 56

224
56

=~

224

e Forimage classification task, during the forward propagation of CNN, the spatial
size reduces while the number of channels increases.
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Interpretation of Convolutional Features

First
layer
e Each layer progressively extracts higher level features of the input
image, until the last layer which aggregates all the high-level
abstraction and makes a final decision. Second =
layer

e Early CNN layers tend to focus on detecting the local features (e.qg.,
edge or corner in the image), whereas later layers usually look for
the high-level abstractions (e.g., shapes of the object in the image)

NYU SAI LAB Yosinski, Jason, et al. "Understanding neural networks through deep visualization." arXiv preprint arXiv:1506.06579
(2015).
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Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures

VGG
ResNet
MobileNet
ShuffleNet
SqueezeNet
DenseNet
EfficientNet
ConvNext

o CNN architectures for other vision tasks

NYU SAI LAB

Image Segmentation, Object Detection
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VGG

- o
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e The key contribution was demonstrating that depth and the use of very small convolutional
kernels (3x3) were crucial for dramatically improving image recognition performance, establishing a
simple and scalable architecture that became foundational in deep learning research.

e Achieves 75%-76% accuracy on ImageNet, which is much higher than other networks at that time
(AlexNet: 62.5%).

NYU SAI LAB Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv 40
preprint arXiv:1409.1556 (2014).




20
X
:3 \ 4
75’ weight layer
5 1 F(x) relu
z 56-1 e %
= Jb-layer weight layer ' "
£ b identity
o
= 20-layer B
; F(x) +x

5 3

iter. (led ).

e When deeper networks are able to start converging, a degradation problem has been exposed: with the
network depth increasing, accuracy gets saturated and then degrades rapidly.

e By introducing the residual link, we reduce the complexity of the learning process by ensuring that the
performance is at least as good as the shallower DNN.

NYU SAI LAB He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016.
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5 input, D-dim
Y y
weight layer 3x3, D-dim
x relu
F(x) v % | Conv 1x1
weight layer

F(x) +x

identity 3X3$D

y = F(x,{W;}) + x y = F(x,{W;}) + Wex

e A straightforward strided convolutional layer may also be added to both
branches when subsampling the output.
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ResNet Bottleneck Design

64-d

Total params:

3x3%64%64 +

3x3x64x64 =73728

Basic block

e For deeper ResNet, the bottleneck block is used.
The three layers are 1x1, 3x3, and 1x1 convolutions, where the 1x1 layers reduces the output

[ )
channel dimension.
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256-d

Y
[ 1x1, 64

l relu

| 3x3, 64

l relu

| 1x1, 256

Bottleneck block

Total params:
Tx1%256%64 + 3x3%x64 %64
+ 1x1%x64%256 = 69632
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ResNet 18

‘ |
|
|
________,,(____4,_____7__- .
H '
SIEREHERENEREHE B];—afaﬁﬁT;%'*a%z
- z = = = = o =1 S '(\‘ Jd 2l Z ) ] el _L g,—__,:_’
& “ s - - 2 & 2 2- 2 = 2 5 2 3 L -
I _I_ L _I_ S _I_ L _I_' | I
Stage 1 Stage 2 Stage 3 Stage 4

e ResNet-18 is partitioned into several stages, across two consecutive stages, the
output channels doubles, and the spatial size is 2x2 subsampled.

NYU SAI LAB
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‘plain-18 ResNet-18

=—plain-34 = ResNet-34 34-layer
2GO 10 20 30 40 50 2('0 10 20 30 40 50
iter. (led) iter. (led)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

NYU S AI L AB He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 45
and pattern recognition. 2016.




ResNet Performance

Performance on ImageNet

Performance on CIFAR-10

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

NYU SAI LAB

method error (%)

Maxout [10] 9.38

NIN [25] 8.81

DSN [24] 8.22

# layers | # params

FitNet [35] 19 2.5M 8.39
Highway (42, 43] 19 2.3M 7.54 (7.7240.16)

Highway [42, 43] 32 1.25M | 8.80

ResNet 20 0.27M | 8.75

ResNet 32 0.46M | 7.51

ResNet 44 0.66M | 7.17

ResNet 56 0.85M | 6.97
ResNet 110 1.7M 6.43 (6.61+0.16)

ResNet 1202 194M | 7.93
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ResNet Implementation

class BasicBlock(nn.Module):
expansion = 1
def _ init_ (self, in_planes, planes, stride=1):
super(BasicBlock, self). init_ ()

64-d self.convl = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bnl = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)

)

def forward(self, x):
out = F.relu(self.bni(self.convi(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out

NYU SAI LAB ,




ResNet Implementation

class BottleNeck(nn.Module):
expansion = 4

256 d def _ init_ (self, in_planes, planes, stride=1):
super(BottleNeck, self)._init_ ()
self.convl = nn.Conv2d(in_planes , planes, kernel_size=1, bias=False)
\ 4 self.bnl = nn.BatchNorm2d(planes)
1X1 64 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
’ self.bn2 = nn.BatchNorm2d(planes)
r(gllj self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
A 4 self.bn3 = nn.BatchNorm2d(self.expansion*planes)
3%x3, b4
self.shortcut = nn.Sequential()
v relu if stride != 1 or in_planes != self.expansion*planes :
self.shortcut = nn.Sequential(
1)(10 225565 nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),

nn.BatchNorm2d(self.expansion*planes)

)
def forward(self, x):
out = F.relu(self.bni(self.convi(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))

out += self.shortcut(x)
out = F.relu(out)

return out
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MobileNet

Depthwise Separable Convolutlon

_________________________________________

%

Depthwise
i Conv
______ Standard Convolution - C _
| Convolution ! H K
! c i ! K
i ,_T | | W
» H K - Pointwise
K Conv
! W ! !

_________________________________________

NYU SAI LAB Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications."

arXiv:1704.04861 (2017).

______

arXiv preprint
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MobileNet

Kernels

*KD:
K

*

Feature maps

*
[]
I

Convolutional
feature maps

Step 1 Depthwise Convolution

e Each kernel moves across the spatial
dimensions of feature maps in the input
activations, analyzing the information
within those spatial dimensions.

NYU SAI LAB

1
e+ o+ [l

Step 2 Pointwise Convolution

The information from each feature maps
are then aggregated by multiplying with
the weight in the pointwise conv kernel
and summing the Convolutional feature
maps together.

A bias may be introduced.
50



Standard Convolution

Input Feature
maps

.
-
.
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Filters

Output Feature e Number of MACs: MxKxKxCxExF
maps

e Storage cost:
32X (MxCxKxK+CxHxW+MxExF)

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

51



Depthwise Separable Convolution

Pointwise
Input Feature Depthwise Filters Output Feature
maps \&C - O maps
Filters \0\ P
C. Depthwise C . °0 0(\\1 1 @
Conv :,>
’ @
w F :
o’. D

e Number of MACs: KxKxCxExF + MxCxExF
e Storage cost: 32X (CxHXW+CxKxK+CxExXF+MxC+MxEXF)

NYU SAI LAB
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Why Depthwise Conv is Cheaper?

e Number of MACs for depthwise separable Conv: KxKxXCXEXF + MxCxEXxF
e Number of MACs for standard Conv: MxKxKxCxExF
e When M is large the computational saving is about KxK (9) times.

e \With a batch size of B, number of MACs are:
e Number of MACs: BXKxKXCXEXF + BxMxCxExF
e Storage cost: 32X (BXCxHXW+CxKxK+BxCXExF+MxC+BxMxEXF)

NYU SAI LAB -




MobileNet-V2

conv 1x1, Relu6

Add I

conv 1x1, Linear

1

1

1

conv 1x1, Linear I

t

Dwise 3x3,
stride=s, Relu6

Dwise 3x3,
stride=2, Relu6

Dwise 3x3, Relub

!

1

Cinput)

MobileNetV1

Conv 1x1, Relud

Conv 1x1, Relué

C 4“;;[);!;» B
Stride=1 block

MobileNetV2

C input D

Stride=2 block

Add residual link between the
blocks.
Adopt ReLUG replace ReLU.

NYU SAI LAB Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018.
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MobileNet Implementation

| 3x3 Conv | |3x3 Depthwise Conv |
&N | N ]
| Rell | | RelLU |
| 1x1 IConv |
e ]
| RelU |

Standard MobileNet

NYU SAI LAB

self.depthwise_conv = nn.Conv2d(
in_channels,
in_channels,
(3, 3),
stride=stride,
padding=1,
groups=in_channels,

)

self.bnl = nn.BatchNorm2d(in_channels)

self.relul = nn.RelU6() if use_relué else nn.RelU()

# Pointwise conv

self.pointwise_conv = nn.Conv2d(in_channels, out_channels, (1, 1))

self.bn2 = nn.BatchNorm2d(out_channels)

self.relu2 = nn.RelLU&() if use relué else nn.RelU()

def forward(self, x):

wun

x = self.
x = self.
x = self.
x = self.
x = self.
x = self.
return x

Perform forward pass.

waar

depthwise_conv(x)
bnl(x)

relul(x)
pointwise_conv(x)
bn2(x)

relu2(x)
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MobileNet V2 Implementation

self.convl = (

I 3x3|Conv I lSX3 Depth;mse Convl ConvNormReLUBlock(in_channels, hidden_channels, (1, 1)) def forward(self, x):
I BN I l BN | if in_channels != hidden_channels "m"perform forward pass.”"”
| I else nn.Identity()
| ReLU | | ReLU |
I ) identity = x
l 1x1 Conv I self.depthwise_conv = ConvNormRelLUBlock(
[ 5
h
l BN | hidden_channels, x = self.convi(x)
L RASREC IS x = self.depthwise_conv(x)
B . w v
| ReLU | (3, 3), =
O x = self.conv2(x)
H stride=stride,
Standard MobileNet :
padding=1,

if . i :
groups=hidden_channels, ¥ sele nesidu

) x = torch.add(x, identity)

self.conv2 = ConvNormRelLUBlock(

hidden_channels, out_channels, (1, 1), activation=nn.Identity return x

NYU SAI LAB




Group Convolution

e The original MAC: EXFXKxKxCxM

NYU SAI LAB

Conv

'lII>E
K

Q
%

sy

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural

networks." Communications of the ACM 60.6 (2017): 84-90.
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Group Convolution

C C 1
' \ Conv '__| —>E Conv
H — H —

NYU SAI LAB

Group size = 2
Each group of feature maps within the input only convolved with partial weight kernels.
This will lead to a large saving on memory consumption and computational cost.
The number of MAC: ExXFxKxKxCxM/G

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks."
Communications of the ACM 60.6 (2017): 84-90.
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ShufileNet

r—J Conv = Conv =
e Group convolution prevents feature
' Cony *ﬁ] = Cony = o maps from different groups from

exchanging information.

lC"_”x _]:>.C°—”¥ 1o

U Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of
NY SAI LAB the IEEE conference on computer vision and pattern recognition. 2018.
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ShufileNet

e The shuffle operation is used to

Conv . exchange the information across
| > = =0 = the groups.

e The shuffle operation with group
convolution can replace the

.1 Cony *ﬁ] = = <§_ = conventional full-channel
%ﬁ convolution without noticeable
accuracy degradation.
1conv _I - e A predetermined pattern is applied
— = D = for the shuffling operations.

U Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of
NY SAI LAB the IEEE conference on computer vision and pattern recognition. 2018. 60




ShufileNet

NYU SAI LAB

1x1 Conv

1 BN RelU

3x3 DWConv |

1 BN RelU

1x1 Conv

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of

N

1x1 GConv

} BNReLU
Channel Shutfle

¥

3x3 DWConv

{aN :

1x1 GConv
/ BN
Add

¢ RelLU

(b)

1x1 GConv

§ BN ReLu
A4 Channel Shuffle
3x3 AVG Pool +

(stride = 2) -
3x3 DWConv
(stride = 2)

BN

1x1 GConv ]‘

5"

Concat
RelU

(c)

the IEEE conference on computer vision and pattern recognition. 2018.
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ShufileNet

Model Cls err. (%, no shuffle) | Cls err. (%, shuffle) | A err. (%)
ShuffleNet 1x (g = 3) 34.5 32.6 1.9
ShuffleNet 1x (g = 8) 37.6 324 5.2
ShuffleNet 0.5x (g = 3) 45.7 43.2 2.9
ShuffleNet 0.5x (g = 8) 48.1 42.3 5.8
ShuffleNet 0.25x (g = 3) 56.3 55.0 1.3
ShuffleNet 0.25x (g = 8) 56.5 52.7 3.8

Table 3. ShuffleNet with/without channel shuffle (smaller number represents better performance)

e G isthe group size, ax is the scaling factor on number of channels.
e Shuffling operation can greatly improve the accuracy.

NYU SAI LAB




SqueezeNet

”,,))) IO YD YD
Yy | O |\ | YD YD YD YD
YD YD YN YD

NYU SAI LAB

1x1 convolution filters

1x1 and 3x3 convolution filters

ReLU ;

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv

preprint arXiv:1602.07360 (2016).

Achieves great accuracy with 50x smaller
parameters than other baselines (4.8MB).
Some strategies:

o Replace 3x3 filters with 1x1 filters.

o Decrease the number of input channels to
3x3 filters.

o Downsample late in the network so that
convolution layers have large activation
maps.

Aims to reduce the CNN parameter size, not
computational cost.
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SqueezeNet

NYU SAI LAB

maxpool/2

256

maxppol/2
256
384
384
512 .
maxpool/2 51

512
maxpool/2 maxpool/2
512 o -
1000 1000 or
global avgpool

lobal |
"labrador s b ey global avgpool
retriever
dog"

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv
preprint arXiv:1602.07360 (2016).
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class fire(nn.Module):
def __init_ (self, inplanes, squeeze_planes, expand_planes):

super(fire, self)._ init_ ()

S ueezeNet self.convl = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1, stride=1)
self.bnl = nn.BatchNorm2d(squeeze_planes)

self.relul = nn.ReLU(inplace=True)

| | self.conv2 = nn.Conv2d(squeeze_planes, expand_planes, kernel_size=1, stride=1)

self.bn2 = nn.BatchNorm2d(expand_planes)

self.conv3 = nn.Conv2d(squeeze_planes, expand_planes, kernel_size=3, stride=1, padding=1)

self.bn3 = nn.BatchNorm2d(expand_planes)

self.relu2 = nn.RelLU(inplace=True)

1
Wei ht 1 3 # using MSR initilization
g I:”:l for m in self.modules():

fiters  [][]

if isinstance(m, nn.Conv2d):

n = m.kernel_size[@] * m.kernel_size[1l] * m.in_channels

m.weight.data.normal_(@, math.sgrt(2./n))

def forward(self, x):

X = self.convi(x)
We|ght x = self.bnl(x)
H = 1f.relul
filters 1 XS SEfcEEMR)
7 outl = self.conv2(x)

outl = self.bn2(outl)
(: out2 = self.conv3(x)
out2 = self.bn3(out2)
out = torch.cat([outl, out2], 1)
F1 out = self.relu2(out)

return out

NYU SAI LAB W =




SqueezeNet

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB Ix 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB ) 4 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al., 2015a)
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47MB 510x 57.5% 80.3%

Achieve a comparable performance as AlexNet, but still suboptimal compare against other

architectures.

ResNet 50: 100MB, Vision Transformer base> 300MB.

NYU SAI LAB

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv
preprint arXiv:1602.07360 (2016).




DenseNet

NYU SAI LAB

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision

and pattern recognition. 2017.

ResNet:

X = Hy(x¢—1) +X¢—1
DeseNet:

xp = Hy([peg,261 sowsXpii])

H(.) is the function of batch
normalization, followed by ReLU and 3x3
Convolution.



DenseNet

NYU SAI LAB

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision

and pattern recognition. 2017.

Weight

<

filters

,
=

—_—>

1eouo0)
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DenseNet

275 I X Y 275 X X Y
—a&— ResNets 3 —&— ResNets
ResNet-34 —a&— DenseNets-BC ResNet-34 —a— DenseNets-BC
265} 26.5}
& 255} & 255} ]
@ bl DenseNet-121
c c
_g 24_5 L . x g 245 b 3 4
g ResNet-50 ’8 ResNet-50
g 2354 g 23.5¢
ResNet-101 DenseNet-2 ResNet-101
25 kg 1R e 225} ResNet-152)
esNet-153
DenseNet-161(k=48) DenseNet-161(k=48)
21 -5 " A A " A A 21.8 A ks " A A A A
0 1 2 3 4 5 6 7 7,8 5 0.75 1 1.25 15 1.75 2 225 25§
#parameters x 10 #FLOPs x 10"

NYU S AI L AB Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 69
and pattern recognition. 2017.




EfficientNet

— -
eoeowider - 4
3 ————
[ —e—————— |
#channels
T T rR— wider - ol

. -

= = %

{ "+~ higher --;--higher
B} resolution HXW i __resolution _} resolution
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

e |tis critical to balance all dimensions of network width/depth/resolution, and surprisingly such balance
can be achieved by simply scaling each of them with constant ratio.

NYU SAI LAB

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International

conference on machine learning. PMLR, 2019. 70



EfficientNet

SiLU()
244 EfficientNet-B6
6 k= AmoebalNet-C
— o ———
AmeobaNet-A _ = = === L
,I e ®
a " - NASNet-A  __..="" SENet
E . 824 St TRRTRREIAT g
S 5
B‘ /, ------ .
24 @ ST e ResNeXt-101
3 204 i o
8 0 ~»7 _.-"" Inception-ResNet-v2
= << »7 . .
2 oA - r,’ .-®Xception
3 &
S | IS eResNet-152
= I Topl Acc. FLOPS
-2 s BO" DenseNet-201 ResNet-152 (Xie etal., 2017) 77.8% 11B
> - EfficientNet-B1 79.1% 0.7B
g 76 N ResNeXt-101 (Xie etal, 2017) 80.9% 328
= I' © ResNet-50 EfficientNet-B3 81.6% 1.8B
—4 L SENet (Hu et al., 2018) 827% o8
Ie . NASNet-A (Zoph et al., 2018) 80.7% 24B
" Inception-v2 EfficientNet-B4 82.9% 42B
6 J 744 AmeobaNet-C (Cubuk et al., 2019) 83.5% 41B
6 NASNet-A EfficientNet-BS 83.6%  9.9B
T T T T T T T ResNet-34
—6 -4 -2 0 2 4 6 0 5 10 15 20 25 30 35 40 45

FLOPS (Billions)
e SiLU is used in the EfficientNet architecture.
e SiLU(x) = x*xo(x)

NYU 8 I L B Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International
A A conference on machine learning. PMLR, 2019.




256-d
Y

1x1, 64 ]

BN, RelLU
Y

3x3, 64 J

BN, ReLU
Y

, 256 ]

ConvNext

ResNet Block ConvNeXt Block

96-d

A

y

[ d7x7, 96 ]

A

LN
y

[ 1x1,

384

)

GELU
A

, 96

]

?

e leverage the insight of vision transformer (Swin-T) to enhance
the performance of CNN.
e Some major changes to change ResNet 50 to ConvNext 50:

o Change number of blocks in each stage from (3, 4, 6, 3)
in ResNet-50 to (3, 3, 9, 3).

Use depthwise separable convolution

Large convolutional kernel.

Replacing ReLU with GELU

Substituting BN with LN.

O O O O

Input Feature Maps

224

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2022.

=2of o Dagie = 02 ¥
112 56

224
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GFLOPs

ResNet-50/200 | *

ConvNext o [
Design — “patchify” stem ><‘~
Sl B depth conv
e For larger Swin Transformers, the ratio is 1:1:9:1. = W B
. . . Inverted : i L ’
Following the design — we adjust the number of Bottleneck "Verting dims
blocks in each stage from (3, 4, 6, 3) in ResNet-50 to IOV oo %
(3, 3,9, 3). kemnel sz. - 5 41
'k:r'gzl kernel sz. - 7 X
e One of the most distinguishing aspects of vision kemel sz. - o [ .
Transformers is their non-local self-attention, which L kemel sz. - 11 [T ¥
enables each layer to have a global receptive field, ~  ReLU—GELU "
so we increase the window size to 7x7.  Jewerstaons b
Design | fowernorms ‘
e Replacing ReLU with GELU: One discrepancy I b
between NLP and vision architectures is the specifics L sep. ds. conv —
of which activation functions to use. ConvNeXt-T/B
/B
NYU SAI LAB| conerance on computer vison and pator rocognion 500, /" mo%., 25 g0 62




ConvNext

model

image

. = #param. FLOPs

S12¢€

throughput
(image / s) top-1 acc.

IN-1K

ImageNet-1K trained models

e RegNetY-16G [54] 224 84M 160G 334.7 82.9
e EffNet-B7 [71] 600> 66M 37.0G  55.1 84.3
e EffNetV2-L [72] 480%> 120M 53.0G  83.7 85.7
DeiT-S [73] 2247 22M 46G 9785 79.8
DeiT-B [73] 224> 8M 176G  302.1 81.8
Swin-T 2247 28M 45G 7579 81.3
e ConvNeXt-T 2242 29M 4.5G 7747 82.1
Swin-S 2242 50M 8.7G  436.7 83.0
e ConvNeXt-S 2242 50M 8.7G  447.1 83.1
Swin-B 224> 88M 154G  286.6 83.5
e ConvNeXt-B 2242 89M 154G 292.1 83.8
Swin-B 3842 88M 47.1G  85.1 84.5
e ConvNeXt-B 3842 89M 450G  95.7 85.1
e ConvNeXt-L 2242 198M 344G  146.8 84.3
e ConvNeXt-L 3842 198M 101.0G  50.4 85.5

NYU SAI LAB

ConvNext achieves a much better
accuracy under the same amount of
parameters and computation budgets.

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2022.
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Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures

VGG
ResNet
MobileNet
ShuffleNet
SqueezeNet
DenseNet
EfficientNet
ConvNext

o CNN architectures for other vision tasks

NYU SAI LAB

Image Segmentation, Object Detection
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CNNs for Other Tasks: Image Segmentation

Fully Convolutional Networks

forward/inference

A fully convolutional based DNN for
image segmentation.
Input: HxWx3 — Output: Hx\WxC

backward/learning

e Image segmentation is a computer vision technique used to divide an image into multiple
segments or regions, each representing a different object, part of an object, or background.

e The goal of image segmentation is to simplify or change the representation of an image into
something more meaningful and easier to analyze.

NYU ‘8 I L B Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings
A A of the IEEE conference on computer vision and pattern recognition. 2015.

76



Segmentation

NYU SAI LAB

Object Detection

Semantic Segmentation

Instance Segmentation
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Segmentation

=

112

(224, 224, 3)

.
.
-

112

&

=

14

-

14

,\&v =

112

.
.
-

112

4

=

(224, 224, C)

e Segmentation is a pixel-level task in which each pixel is assigned an output label.
e The loss function (cross-entropy loss) is applied on each pixel.

NYU SAI LAB
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U-Net

input
image ||
tile

”' 256 25¢
4

—. ;'
A

NYU SAI LAB

e The direct path sends feature maps from
the encoder directly to the
output . .
*|*|*| segmentation corresponding decoder layers, allowing
A & = map . ..
the decoder to recover spatial precision.
e This stabilizes training and improves
convergence.

: =»conv 3x3, ReLU
o o S = copy and crop
% ,-.i : § max pool 2x2
° ¥ 102 B B 4 up-conv 2x2
=» CONv 1x1

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation.”
International Conference on Medical image computing and computer-assisted intervention. Cham: Springer international
publishing, 2015.
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Transposed Convolution

e To upsample the input, we can apply transposed convolution.

Stride = 1 Stride = 2

NYU SAI LAB https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html
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Focal Loss

5 e A modified cross-entropy designed to perform
CE(p) = —log(p) =il better with class imbalance.
4 FL(p) = —(1 — p)” log(p,) z:?.s ° Oftep used in the prot?lem of object detection
— =§ and image segmentation.
—

3t O  Down-weight easy examples and thus focus training

§ on hard negatives
gl |
g FL(p) = —a(1 — p,)” log(p,)
1r —~ @ VY controls the shape of the curve
e e a controls the class imbalance and introduce
N e e

0 0.2 0.4 0.6 e ; weights to each class.
probability of ground truth class

NYU 8 AI L AB Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer 81
vision. 2017.




CNNs s for Other Tasks: Object Detection

lEZ“% e XHX'ﬁ e NN will generate the likelihood
e NN L of each anchor point and the

coordinates of its bounding box.
e Another branch will produce the
category of each bounding box

w2

(B) YOLO Algorithm result

(A) Input image
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CNNs s for Other Tasks: Object Detection

Object
detection

2
<

= (1xC)

—> (X1,Y1),(X2,Y2)

e The bounding box is defined by its top-left and bottom-right coordinates,
and the object detection network also outputs a 1xC classification vector.

NYU SAI LAB
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CNNs for Other Tasks: Video Processing

' {

"
o

NYU SAI LAB

To process video, we can concatenate
the consecutive frames together and
use 2D convolution to process it.
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Presentations

e You Only Look Once: Unified, Real-Time Object Detection
o Aman, Vanshika

e TSM: Temporal Shift Module for Efficient Video Understanding
o Zuheng, Zewen
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https://docs.google.com/presentation/d/1MOKYTJ1lvXIYQYXA3JlCAwB-VEtabRiakIpBNquHfw0/edit?usp=sharing
https://docs.google.com/presentation/d/11KgVA6Tno0KlcxPXtXv0P7aEBtOmArUO/edit?usp=sharing&ouid=107967898063970461674&rtpof=true&sd=true

